Monday, November 21, 2016

What is the problems with much of the engineering literature?

With the increasing pressure on academics to publish articles and the many journals available for such publication I have noticed that many academic publication show clear evidence of a lag of industrial experience among the writers. The result - in my view - is, that many academic articles don't have a clear focus on the potential reader.

The following quote is from an Elsevier peer reviewed publication:
"In a large process plant, there may be as many as 1500 process variables observed every few seconds leading to information overload."
You may ask, what is wrong here? The writer appear lag a) an understanding of how a DCS works, and b) an the difference between logging data and observing them. It is true, that a modern DCS or SCADA may have 1500 process variables, which are being logged every few seconds. However, even at very complex facilities the operator usually have less than a dozen key process variables, which she or he monitors continuously. So - in my view - the statement that the number of variables entering the DSC or SCADA leads to information overload is incorrect and misleading. I think the reviewer should asked the authors to a least modify this sentence in introduction. Unfortunately most reviewers don't go into such details. I think this is a major quality issue with the current system of academic publications.

This very well illustrate a problem with current engieneering literature in the sciences. The readers and the authors see things from different perspectives. By Chylld - Own work, CC BY-SA 3.0,
I have however noticed, that the introduction to articles in the medical literature often are much more precise and to the point. In the engineering literature I find most introductions very loose essay like motivations for the work done after the work was performed.

Here is a second quite from the same publication:

"Using MFM to model the plant all that is needed is a basic understanding of chemical unit operations, their purposes and the fundamentals on which these purposes are bult, i.e. transport phenomena, thermodynamics and kinetics. This means that functional HAZOP study may be performed by less experienced personnel."
Unfortunately one of my publications is quoted to support this statement. However, the major problem in this quote is the assumption, that if you understand chemical unit operations, then you also understand how they may fail, which is what is needed for a HAZOP study. But operational principles of chemical unit operations are much easier to grasp than the failure modes of even a single unit operation, e.g. a distillation tower. In my article we only claimed, that a less experienced engineer could help with the pre-meeting tasks, if one divided the plant along functional lines. A distillation column would e.g. be divided into a reflux loop, a reboiler loop, a feed section and two separation sections.

Another area, where much engineering literature fails, is in comparing a presented approach or methodology to other approaches or methodologies for handling the same problem. This naturally leads to weak conclusions, such as the following:
"The results show the strength of this approach and can be considered as a useful strategy for dealing  with  complex  chemical processes."
However, the article contain no quantification of "the strength of this approach" or of  how "useful" the strategy is compared to what is already being done in practice. The result is, that practicing engineers, whether in design or operations or process control, are very reluctant in adopting new methodologies. This means progress is slow to move from academic research in engineering to engineering practice.

The question is if we can ever get both the readers and the authors on the same level. By Original image by Algr.Recreated, fixed isometric projection and vectorised by Icey. - Own work.This vector image was created with Inkscape., CC BY-SA 3.0,

So how do we get academic writers to focus more on their potential readers? Their audience! The current system provides no credit for number of readers to the authors. However, with the increasing number of open access online journals is should be relative easy for publisher to monitor which articles are being read more than others, and this information could then be feed back in the academic merit system. Currently such information about readers is only available through independent portals such as ResearchGate and others.